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Susceptibility of liquid-crystalline solutions of semiflexible 
macromolecules in an external orientational field 

A R Khokhlov and A N Semenov 
Physics Department, M )scow State University, Moscow 117234, USSR 

Received 12 August 1981 

Abstract. The susceptibility of solutions of semiflexible macromolecules in an external 
orientational field of the dipole type is considered both for the isotropic and the liquid- 
crystalline phases. It is shown that the concentration dependence of the zero-field suscep- 
tibility in the anisotropic phase depends essentially on the character of the flexibility 
distribution along the chain contour. For a localised flexibility mechanism (freely jointed 
chain) the susceptibility in the anisotropic phase is practically independent of concentration, 
whereas for a persistent flexibility mechanism it increases exponentially with concentration. 
Similar differences exist in the concentration dependence of the mean-square end-to-end 
distance for freely jointed and persistent macromolecules in the anisotropic phase. In an 
Appendix it is shown that the problem under consideration is analogous to the well known 
quantum mechanical problem of the energetic spectrum of a particle in two identical wells 
separated by a high potential barrier. 

1. Introduction 

Considerable attention has been paid recently to studies of liquid-crystalline ordering in 
solutions of stiff-chain polymers (Papkov and Kulichikhin 1977, F~OTY 1978, Grosberg 
and Khokhlov 1981). In particular, in recent papers (Khokhlov 1978, Khokhlov and 
Semenov 1981) we have proposed a theory of the liquid-crystalline transition in 
solutions of semiflexible macromolecules (i.e. of macromolecules whose persistent 
length, r, is much larger than the characteristic width of the chain, d, but much smaller 
than the total contour chain length, L). 

It was shown that the properties of this transition in a good solvent are not universal 
for all types of semiflexible macromolecules-they differ essentially depending on the 
character of the flexibility distribution along the chain contour. Two of the most 
frequently used models of semiflexible macromolecules were considered in detail: a 
chain of freely jointed rigid cylindrical rods of length 1 = 2iand of diameter d ( 1  >>d),  
and a persistent chain, which can be represented as an elastic filament, homogeneous 
along the chain, of diameter d and of persistent length [(effective Kuhn segment 1 = 2 t  
I >> d ) .  In the first case all the chain flexibility is localised at the junction points, while in 
the second case flexibility is homogeneously distributed along the chain contour. It was 
shown (Khokhlov and Semenov 1981) that in the case of the persistent model the 
liquid-crystalline ordering occurs at significantly higher polymer concentrations and the 
order parameter at the transition point is much smaller than for the freely jointed model 
with the same parameters 1 and d.  
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Although the differences mentioned in the properties of the liquid-crystalline 
transition are rather significant, they are, nevertheless, purely quantitative in the sense 
that the functional dependences on the parameters of the system (such as 1 and d )  are 
the same for both models, since only numerical coefficients in these dependences 
depend on the model adopted. From the experimental point of view for reliable 
discrimination between the cases of localised and homogeneously distributed chain 
flexibility mechanisms it is advisable to find some characteristic of the liquid-crystalline 
phase which would depend on the parameters of the system in a qualitatively different 
way for the two models described above. 

In this paper we shall show that the susceptibility, ,yo, of the liquid-crystalline 
solution in zero external orientational field of the dipole typet (i.e. in the field in which 
the potential energy of a straight chain segment forming the angle 8 with the orien- 
tational axis is proportional to -cos 8) has the properties of such a characteristic. We 
shall show that for the freely jointed model the value of ,yo depends only slightly on the 
concentration, while in the case of the persistent model the concentration dependence 
of xo in the anisotropic phase is very pronounced (exponential). Thus, measurements of 
the susceptibility in an external orientational field of the dipole type, which can easily be 
performed experimentally, can give useful information concerning flexibility 
mechanisms of stiff-chain polymers. 

It is worthwhile also to note from the very beginning that the value of ,yo is directly 
connected with the mean-square size of a polymeric coil along the anisotropy axis (see 
equation (6) below). 

2. Free energy of the solution of semiflexible macromolecules 

For the calculation of the susceptibility ,yo it is necessary, first of all, to write down the 
expression for the free energy of the solution of freely jointed and persistent semi- 
flexible macromolecules. Let L be the contour length of macromolecules, N = L/ l  the 
number of effective segments per macromolecule, T the temperature, c the average 
concentration of effective segments, and 9 = ?rdzlc/4 the volume fraction occupied by 
macromolecules in the solution. Let us introduce also the orientational distribution 
function, f ( n ) ,  for the unit vectors n tangential to the chain (defined in the usual 
way-see Onsager (1949)). As was shown by Khokhlov (1978) and Khokhlov and 
Semenov (1981), in the absence of external fields the free energy of the solution per 
macromolecule, F, can be written as a sum of two terms, F = Fl + Fz, where Fl is the 
contribution due to the orientational entropy and Fz is the free energy of the interaction 
of segments. For the freely jointed model (Khokhlov 1978) 

whereas for the persistent model (Khokhlov and Semenov 1981) 

(in equations (1)-(2) we have chosen the following normalisation for the function 

t The external magnetic (electric) field in the case when polymer chain segments have a constant magnetic 
(electric) moment directed along the chain is an example of the field of the dipole type. 
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f ( n ) :  j f ( n )  dn,/47r = 1). As for the free energy of the interaction of segments, Fz, at 
small polymer volume fractions in the solution (6 << 1) it can be written using the second 
virial approximation, 

where B(n, n’) = 21’dJsin yI is the second virial coefficient of the interaction of straight 
segments of length 1, whose orientations (specified by the unit vectors n and n’) form the 
angle y with each other. In the paper by Khokhlov and Semenov (1981) it was shown 
that equation (3) is valid for the persistent model, as well as for the freely jointed model. 
If 1 >> d the use of the second virial approximation in equation (3) leads at 6 << 1 only to 
negligible error (Straley 1973). 

In the presence of an external orientational field of the dipole type we must add a 
third term to the free energy of the solution: F = Fl +Fz + F3. For both models 

where 8 is the angle between the vector A and the orientation axis, and U is the 
dimensionless parameter of the field, which has the meaning of the potential energy (in 
temperature units) of the effective segment completely stretched along the orientation 
axis. 

The order parameter corresponding to this field can be introduced as follows: 
Q = (cos 8 )  (averaging is performed using the equilibrium function f (n ) ) .  Susceptibility 
is defined as ,y = aQ/au. Our aim is the determination of the concentration dependence 
of the susceptibility in the zero field, xo = a Q / a ~ l , , ~ ,  for freely jointed and persistent 
models. 

3. Concentration dependence of the susceptibility 

Equations (l), (3)-(4) (for the freely jointed model) or equations (2)-(4) (for the 
persistent model) give the free energy of the solution of semiflexible macromolecules as 
a function of f ( n ) .  To determine the equilibrium free energy the value of F should be 
minimised with respect to all possible distribution functions f ( n ) .  For the minimisation 
we shall use the approximate variational method (a more exact consideration, which is, 
however, valid only in the concentration range d/l<< 6 << 1, is presented in the 
Appendix). Let us choose the trial function in the form? 

f ( n )  = constant x cosh(a cos 8 +s), (5 1 

where a and s are the variational parameters and ‘constant’ is the normalising constant. 
Substituting function ( 5 )  in the expression for the free energy and minimising F = 
F1+Fz+F3 with respect to a and s, we find the equilibrium function f ( n ) ,  the 
equilibrium free energy and the values of Q and ,YO (calculations are analogous to those 
described by Grosberg and Khokhlov (1981) and Khokhlov and Semenov (1981)). 

t Onsager (1949) used the trial function f ( n )  -cosh(a cos I?). In the presence of the external field of the 
dipole type, because of the non-equivalence of the direction n and -n for this field, the introduction of the 
second variational parameter s is necessary. 
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The calculated dependence of the susceptibility ,yo on x = 8l/d (the value of x is 
proportional to the polymer concentration in the solution) is shown in figure l(a) (freely 
jointed model) and in figure l(6) (persistent model). In both cases x l )  and x y  are the 
boundaries of the phase separation region: at x C xbi' the solution is isotropic and at 
x > xb"' it is anisotropic. For the freely jointed model xbi) = 3.25, x t )  = 4.86 (Khokhlov 
1978), whereas for the persistent model xg)  = 10.48, x?' = 11.39 (Khokhlov and 
Semenov 198 1). 

I I 1 
1 . I  

16 Xb" 11 X P '  1'2 13 
X 

Fitwe 1. Dependence X O ( X )  for freely jointed ( a )  and persistent ( b )  models, 

From figure 1 it can be seen, first of all, that when the liquid-crystalline phase 
appears the susceptibility in the zero field, ,yo, in both cases undergoes a leap from the 
constant isotropic-phase value $to the value close to unity (for the freely jointed model) 
or to the value ,yo -4  (for the persistent model). Further, it is important that when the 
polymer concentration in the anisotropic phase ( x  > x? ' )  increases, the value of ,yo for 
the freely jointed model remains practically unchanged, tending to unity in the limit 
x >> 1, while for the persistent model at x >x?' the susceptibility xo increases rapidly 
with the increase in x .  It is easy to show that at x >> 1 the increase of xo for the persistent 
model is exponential: X O ( X )  - exp(1 .72~~ '~ )  (at the values of x shown in figure l (6)  this 
asymptotic relation is not yet achieved). 

Further, it is noteworthy that from general thermodynamics it follows that 

x0 = ( R I ) / N ~ * ,  (6)  
where (Rf)  is the mean square of the projection of the end-to-end distance vector on 
the orientation axis. Hence, it is clear that the value of the susceptibility in the zero 
field, xo, is closely connected with the mean-square end-to-end distance, ( R 2 ) .  In 
particular, approximate invariance of ,yo in the anisotropic phase for the freely jointed 
model means that in this case the value of (R2)  also changes very insignificantly as the 
concentration increases; exponential increase of the function x O ( x )  in the anisotropic 
phase for the persistent model leads to a similar exponential increase of the function 
( R 2 ) ( x )  (see figure 2). 
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X 

Figure 2. The value of (R2)/N12 as a function of x for the persistent model, calculated using 
the variational method. 

Physical meanings of the differences obtained in the behaviour of the solutions of 
freely jointed and persistent macromolecules can be interpreted as follows. For both 
models the function f ( n )  in the anisotropic phase has two sharp maxima along the 
anisotropy axis (i.e. at 8 = 0 and 8 = T ) ;  with an increase of the degree of orientational 
order the ‘amplitude’ of these maxima increases, while their width decreases. Due to 
the localised flexibility mechanism in the freely jointed chain, in the absence of field 
each segment can belong to either minimum with probability 3 independently of the 
orientation of the adjacent segments; this means that (R:) - NI’, i.e., according to 
equation (6), ,yo - 1. For a persistent macromolecule with homogeneously distributed 
flexibility the situation is different: in this case, as the order parameter in the anisotropic 
phase increases (i.e. as the concentration increases), the ‘switching’ of the chain 
orientation from one maximum to another requires more and more free energy to be 
expended, i.e. the average chain length between two such ‘switchings’ exponentially 
increases. It is easy to understand that the value of (R?) (and, consequently, of ,yo) is 
proportional to this average length, which is the reason for the exponential increase of 
the functions x0(x)  and (R2) (x )  obtained. 

Using similar considerations, let us estimate the limits of the increase of ,yo. As the 
concentration increases, the degree of orientation in the anisotropic phase can increase 
to such an extent that the average chain length between two ‘switchings’ can become 
comparable to the total chain length. In this case the whole chain will behave 
approximately as one segment of length L = NI, so that ,yo = N. It is clear that as soon as 
the values ,yo - N are reached, further increase of the function ,yo(x) ceases (depen- 
dence ,yo(x) undergoes saturation at ,yo - N). 

The effect described above can be called (somewhat approximately) the ‘stiffening’ 
of the persistent macromolecule induced by the increase in the degree of anisotropy. It 
takes place because of the specific structure of the function f ( n )  at high degrees of 
anisotropy (with two identical sharp maxima). In other words, this effect is due to the 
fact that the segments of the persistent macromolecule in the anisotropic solution feel 
the action of the self-consistent field, which has the form of two deep potential minima 
(along the directions 8 = 0 and 8 = T )  separated by a high potential barrier. In the 
Appendix we shall establish the exact analogy between the problem under considera- 
tion and the well known quantum mechanical problem of the energetic spectrum of G 
particle sitpted in two identical potential wells separated by a high potential barrier, 
and we shall calculate with higher accuracy (without the use of the variational method) 
the dependence XO(X) for a persistent macromolecule at 1 << x << l /d .  
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Appendix. Susceptibility of the solution of persistent macromoledm and the 
behaviour of a quantum mechanical particle in two potential we& separated by a 
barrier 

Let us consider a solution of persistent semiflexible macromolecules for which the free 
energy is given by equations (2)-(4). Minimisation of the free energy (taking into 
account the additional normalising condition I n n )  dQJ47r = 1) leads to the integro- 
differential equation 

-TV21(1 + U,,$ =E*, (-41) 
where 

* ( n )  = [f(n)1”2, E=AT, 

(-42) 
dR.? 
4 a  

Uefi(n)= Uext+ Uself=-uT COS 8 + c T  f(n’)B(n,  n’)-, 

and A is the indefinite Legendre multiplier, Equation (Al) is equivalent to the 
Schrodinger equation for a quantum mechanical particle in the potential field U,&). 
Solution of the polymer problem corresponds to the ground state solution (E = EO) of 
the quantum mechanical problem, the value of Eo having the sense of the chemical 
potential of the segment, ,U, in polymer solution: Eo = p. 

Since our aim is the calculation of the susceptibility ,yo in a zero external field, it is 
natural to consider the field U,,, as a perturbation and to use perturbation theory. If $,, 
and E,, are the normalised eigenfunctions and the corresponding eigenvalues of 
equation (Al) in the absence of perturbation (external field), the correction to the 
wavefunction of the ground state, &,bo, due to the external field can be calculated using 
the formula (Landau and Lifshitz 1974) 

where 

J 

Let us consider a highly anisotropic polymer solution, which appears at the 
concentrations x >> 1 (let us assume, however, that x << l /d ,  i.e. that the polymer volume 
fraction in the solution is much smaller than unity). In this case the unperturbed 
potential Uext(n) consists of two deep potential wells, localised around the directions 
8 = 0 and 8 = T, separated by a high potential barrier. It is well known (Landau and 
Lifshitz 1974) that the spectrum of such a system has a doublet structure with 
exponentially small splitting. Hence, we can take into account in the sum (A3) only the 
first term. If * ( n )  is the normalised wavefunction of the ground state of one isolated 
well, we have (Landau and Lifshitz 1974) 
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Taking into account the equality I) = f”’, the definition of x and equation (A3), it is 
easy to show that 

xo = 2T/(E1 -Eo). (A5) 
Thus to find xo it is necessary to determine the function I ) (n )  near the equator 
(e  = 7r/2). In this region we can use the WKB method: 

where q = [(Us,lf(e)-p)/T]1/2 and A is the normalising constant. The value of the 
chemical potential, g, can be found using the variational method with the trial function 
f ( n )  = constant exp(-P sin2 6)-in this case the inaccuracy of the variational method 
will influence only the numerical factors in the final result, but not the functional 
dependences. As a result we obtain p = 5 T(2/7r) x . From the normalisation 
requirement we have A = 2 ~ ” ~ .  In the case of high anisotropy, if the angle 8 is not too 
small USelf(e) = (8 /w)xT sin 8. Substituting all these expressions in equations (A4)- 
(A6), we obtain finally 

(A7) 
Functional dependences in equation (A7) in the case 1 << x << l /d  (d/ l<< 19 << 1) are exact, 
but all the numerical coefficients are written down approximately. 

At very large x equation (A7) gives ,yo - exp(3.82~”~).  At the same time, using the 
variational method we have obtained above the asymptotic form xo - e x p ( 1 . 7 2 ~ ~ ~ ~ ) .  
We can conclude that although the variational method expresses correctly the fact of 
the exponential increase of the susceptibility in the anisotropic phase, it gives, never- 
theless, qualitatively inaccurate results for the function x 0 ( x )  at x >> 1. For more exact 
calculation of the dependence x o ( x )  equation (A7) should be used. 

1/3 2/3 

xo = 0 . 2 5 ~ - ~ / ~  exp(-7.07~’/~+ 3 . 8 2 ~ ” ~ ) .  
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